кут C—спільний у ΔCBH та ΔCAM.
кутCMA=кутуCHB=90°
Отже, ΔCBH подібний ΔCAM(за двома кутами)
Треугольник прямоугольный, отсюда следует, что центр описанной окружности является серединой гипотенузы. Находим гипотенузу по теореме Пифагора. Обозначим треугольик ABC, где BC гипотенуза, тогда BCквадрат =ACквадрат+BCквадрат. Отсюда BC=корень из 40*40+30*30=корень из 2500= 50. Теперь делим пополам и получаем R= 50/2=25см. Радиус Описанной окружности найден. Радиус вписанной окружности находим по формуле r=R*cos180/n. Подстовляем данные в формулу R=25,cos60=1/2. Подставляем r=25*1/2=12,5 (см).
Узнаем длины сторон треугольника через координаты концов отрезков.
Предположим, что ∆АВС - прямоугольный. Тогда его большая сторона АВ=5 может стать гипотенузой. По обратной теореме Пифагора АВ²=ВС²+АС². Подставим числа:
5²=4²+3²
25=16+9
25=25 - верное равенство.
Значит, ∆АВС - прямоугольный с прямым углом С.
Его площадь равна половине произведения катетов СА и СВ.
S=0.5*4*3=6.
180-120=60 градусов
а в треугольнике сумма углов = 180 градусов
получается что
180-60=120 градусов сумма углов не смежных с эим углом