Привет :). По-моему, решение следующее:
ΔАВС (угол C- прямой), биссектрисы (это луч, который делит угол по полам) - СН, которая делит углы АСВ(прямой) на уголки в 45°; и ВМ, которая делит угол АВС на углы в 22,5 (т. к. Δ - равнобедренный (по условию), то боковые стороны равны(АС=СВ) и углы при основании тоже равны (углы САВ=АВС=45° и 45°:2=22,5)) Теперь работаем в ΔСОВ: угол ОСВ=45°, угол ОВС=22,5°. Можно найти угол СОВ. Сумма углов треугольника всегда равна 180°. Имеем: СОВ=180-(22,5+45)=112,5°. Можем найти меньший угол. Т. к. углы МОС и СОВ - смежные, а в сумме смежные углы равны 180°, то 180°-112,5°=67,5.
Ответ: 67,5
Жаль, но чертежа нет.
Находишь середину любой диагонали.
Напимер BD (5,-3) (-1,2)
Середина стороны находится так. 5+(1)/2 , -3+2\2
и получается: координаты точки середины диагонали (2, -0,5)
Нам нужна абсцисса, то есть иксовая координата, а это 2.
5/2=2.5cм
угол1=60/2=30градус
а=2,5см*2=5см
р=5см*4=20см
а) Пусть катет равен х см, тогда по теореме Пифагора :
х² + х² = 8²
2х² = 64
х² = 32
х = √32 = 4√2
Площадь прямоугольного треугольника можно найти по формуле S = 0.5 * a * b (а и b это катеты)
S = 0.5 * 4√2 *4√2 = 4*4 = 16 (см²)
б) 1,4дм = 14 см
Пусть катет будет равен х см, тогда по теореме Пифагора :
х² + х² = 14²
2х² = 196
х² = 98
х = √98 =7√2 см
S = 0.5*7√2 *7√2 = 7*7 = 49см² = 0.49 дм²
в)пусть катет также будет равен х м , по теореме Пифагора :
х² + х² = с²
2х² = с²
х² = с²/2
х = с/√2
S = 0.5 * (c/√2) * (c/√2) = c²/4 (м²)