H₁=h₂
а,в,с-стороны треугольника;
S=ah₁/2
S=bh₂/2=bh₁/2 следовательно,
ah₁/2=bh₁/2
a=(2bh₁)/(2h₁)
a=b- следов. Δabc-равнобедренный
1) найден синус угла из основного тригонометрического тождества sinA=0,6⇒BC=AC*sinA = 5×0,6=3
Решение смотри на фотографии
Пусть имеем ромб ABCDAC и BD - диагоналит О - точка пересечения диагоналейУгол BAD=62 градусаУгол BAO=62/2=31 градусУгол ABO=90-31= 59 градусовsin(BAO)=BO/AB => BO=AB*sin(BAO)=46sin(31)cos(ABO)=AO/AB =>AO=AB*cos(ABO)=46cos(59d1=2BO=92* sin(31) <span>d2=2AO=92*cos(59) </span>
Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или
18/12=АС/18. Отсюда АС=18*18/12=27.
Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения:
Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB.
Пусть <ABC=<ADB=α.
Тогда по теореме косинусов из треугольника АВС:
АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1)
По теореме косинусов из треугольника АВD:
АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα.
Отсюда Cosα= -1/8.
Подставим это значение в (1):
АС²=2*18²(1+1/8)=729. Или
АС=√729=27.
DC=АС-АD или DC=27-12=15.
Ответ: DC=15.