Дано:а параллельна b ,Доказать:все точки каждой из двух параллельных прямых равноудалены от другой прямой.Доказательство:Проведем перпендикуляры из точек М и К.Прямая МN перпендикулярна прямой b и КL перпендикулярна прямой b.Перпендикуляры равны(так как прямые параллельны)Таким образом если из каждой точки на любой прямой провести перпендикуляр к другой прямой,то все перпендикуляры этих параллельных прямых равны и эти параллельные прямые равноудалены друг от друга как и все их точки,что и требовалось доказать
В прямоугольном треугольнике СНМ находим угол СМН, зная, что сумма углов треугольника равна 180°:
<CMH=180-<CHM-<HCM=180-90-22=68°
Находим угол СМВ:
<CMB=180-<CMH=180-68=112°
Т.к. СМ - биссектриса, то <BCM=90/2=45°
Находим угол В в треугольнике ВСМ:
<B=180-<BCM-<CMB=180-45-112=23°
В треугольнике АВС находим оставшийся неизвестный угол А:
<span><A=180-<C-<B=180-90-23=67</span>°
30 градусов. т.к сумма углов равнобедренного треугольника = 180 градусов.
Я думаю, что ответ вот такой... если что-то не так, поправьте)