Пусть a и b параллельные прямые, с - секущая. Тогда углы (обозначенные синим цветом) равны как накрест лежащие. m и n бисектриссы этих углов. Известно, что бисектрисса делит угол пополам. Если накрест лежащие углы равны, то также равны и их половинки, т. е. угол 1 равен углу 2.
Рассмотрим две прямые m и n и секущую с. Углы 1 и 2 (желтые) являются накрест лежащие для этих прямых и секущей и поскольку (как было сказано выше) угол 1 = 2, то прямые m и n параллельны.
Доказано.
Решение....... (После 9 номера идут в обратном порядке).
Возьмём треугольник в плоскости, перпендикулярной ребру двугранного угла, с высотой, равной 1.
При угле в 45 градусов основание тоже равно 1.
Теперь рассмотрим треугольник с углом 30 градусов и высотой 1.
Его основание равно 1 / tg 30 = 1 / (1/√3) = √3.
Треугольник в рассмотренной плоскости, где гипотенуза равна √3, а один из катетов равен 1, образует угол с ребром, равный arc sin (1/√3) = <span> arc sin <span><span>0.57735 = </span><span>0.61548
радиан = </span><span>35.26439
градус.</span></span></span>
<u>Вариант 1.</u>
Диагональ делит угол С на два угла. Значит, сам угол С равен сумме этих двух углов, т. е. угол С=30+35=65 градусов. Противоположные углы параллелограмма равны (по определению), значит, угол А тоже равен 65 градусам. Сумма углов четырехугольника равна 360 градусов. Угол B равен углу D. Значит, угол A+B+C+D=360, отсюда, угол B+D=360-65-65=230. Т.к. они равны, то угол B=D=230/2=115 градусов.
Если сумму углов четырехугольника, не проходили, то
<u>Вариант2.
</u><u />BC параллельна AD и AC-секущая, тогда угол BCA=углу CAD и равен 30 градусам. Угол BAC=ACD=35 градусам. Рассмотрим треугольник ABC:
В нем углы равны 30 и 35 градусов, значит, угол B=180-30-35=115 градусов. Угол B равен 115, угол С равен 65, значит, угол B - больший.