Это параллелограмм ,у него есть свойство-стороны параллелограмма попарно равны и параллельны,следовательно АМ=ВС
Проведём высоту ВЕ к стороне DC, ЕВ=5(т.к. катет лежащий против угла в 30 градусов, равен половине гипотенузы), следовательно площадь паралелограмма будет равна S=40*5=200
Ответ: S=200
Параллелограмм АВСД: АВ=СД, АВ||CД и АД=ВС, АД||ВС
Биссектриса ВЕ (<AВЕ=<СВЕ) делит сторону АД на отрезки АЕ/ЕД=2/1.
АЕ=2ЕД
АД=АЕ+ЕД=3ЕД
<СВЕ=<АЕВ (<span>при </span>пересечении параллельных прямых <span>АД и ВС </span>секущей ВЕ накрест лежащие углы <span>равны).
</span>Получается, что в ΔАВЕ углы при основании равны (<АВЕ=<АЕВ), значит треугольник равнобедренный АВ=АЕ.
Периметр Р=2(АВ+АД)=2(2ЕД+3ЕД)=10ЕД
ЕД=Р/10=60/10=6
АЕ=6*2=12
Стороны АВ=СД=12 и АД=ВС=18