Умножим первое уравнение на -3: -3*(x-3y)=-3*5;
-3x+9y=-15; Теперь сложим его со вторым уравнением.
-3x+9y+3x+2y=-15+4;
11y=-11;
y=-1; Подставим найденное значение в первое уравнение;
x-3*(-1)=5;
x+3=5;
x=2;
task/30341567 Решить неравенство 9*4ˣ +8*12ˣ ≥ 36ˣ
Решение 9*4ˣ +8*12ˣ ≥ 36ˣ ⇔9*(4ˣ)+ 8*(3*4)ˣ - (9*4)ˣ ≥ 0 ⇔
(9ˣ)*(4ˣ) - 8*(3ˣ)*(4)ˣ - 9*(4)ˣ ≤ 0⇔(4ˣ)*(9ˣ - 8*(3ˣ) - 9 ) ≤ 0 ⇔
9ˣ - 8*(3ˣ) - 9 ≤ 0 ⇔ (3ˣ +1)*(3ˣ - 9) ≤ 0 ⇔ 3ˣ - 9 ≤ 0⇔ 3ˣ ≤3²
x ≤ 2 , т.к 3ˣ _ возрастающая ( основание a= 3 > 1 )
ответ: x ∈ (-∞ ; 2] .
Первое число, которое при делении на 5 даёт в остатке 1: a₁=6.
Следующие числа: 11, 16, 21... То есть d=11-6=5.
Последнее число первой сотни, которое при делении на 5 даёт
в остатке 1: an=96 ⇒
an=a₁+(n-1)*d=6+(n-1)*5=96
n-1=(96-6)/5
n-1=18
n=19
S₁₉=(a₁+a₁₉)*n/2=(6+96)*19/2=102*19/2=51*19=969.
Ответ: S₁₉=969.