Все грани тетраэдра - равносторонние треугольники, значит в тр-ке АSС: АР (высота) = (√3/2)*а = 3√3.
Основание искомой пирамиды - сечение АВР - равнобедренный тр-к с равными сторонами АР и ВР, равными 3√3 и основанием АВ=6. Значит площадь основания искомой пирамиды равна Sо=(b/4)*√(4a²-b²), где а - боковая сторона, b- основание. So =(6/4)*√72 = 9√2.
Осталось найти высоту SО искомой пирамиды. Сечение АВР перпендикулярно грани SС, значит SP перпендикулярна плоскости сечения и является высотой искомой пирамиды.
Тогда объем искомой пирамиды равен: V=(1/3)*So*h = (1/3)*9√2*3 = 9√2см³
1) 16
2) 7
3) 21,5
4) 7
5) 11
1. Треугольники ABC и DEF подобные, так как:
1.1. ∠A = ∠D
1.2.
Равные отношения сторон в этих треугольниках говорит о подобии треугольников.
2. Треугольник ABC и треугольник A₁B₁C₁ подобные, так как:
Равные отношения сторон в этих треугольниках говорит о подобии треугольников.
Думаю, из рисунка все ясно без лишних слов.
Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон