..........................
Признака равенства треугольников по трем углам не существует
Найдем площадь ΔАSМ.Вся грани данной пирамиды равна. Значит АМ=SМ.
SМ²=ВS²-ВМ²=64-16=48.
Добавим на рисунке отрезок МК⊥АS, точка К - середина АS.
ΔSКМ: КМ²=МS²-КS²=48-16=32.
КМ=√32=4√2.
Найдем площадь сечения ΔАSМ.
SΔ=0,5·8·4√2=16√2 см²
Из треугольника СDH найдем сторону боковую, где H - точка падения высоты из вершины С.
DH=10-7=3 (одна часть трапеции - это прямоугольник, расстояние между высотами - это и есть величина меньшего основания)
СH=AB=4 (как высоты)
Отсюда по т. Пифагора CD=5
sinD=CH/CD=4/5
cosD=DH/CD=3/5
tgD=CH/DH=4/3
ctgD=DH/CH=3/4
24 - ответ, т.к.:
диагонали пересекают среднюю линию трапеции в двух точках, получаются всего 3 отрезка по 6 см. Однако средняя линия трапеции геометрически совпадает со средней линией каждого из треугольников, образованного основанием, боковой стороной и диагональю, ее длина 2*6=12. Средняя линия треугольника равна половине основания. Следовательно, основание равно 2*12=24см.