Так как боковое ребро в правильной четырех угольной пирамиде образует с плоскостью основания угол 45 градусов то
треугольник образованный этим ребром и высотой пирамиды будет прямоугольный и равнобедренный и гипотенуза в нем 5
Тогда высота пирамиды и длина проекции ребра на плоскость основания будут равны по 5/√2
Треугольник образованный при пересечении диагоналей в основании тоже прямоугольный и равнобедренный и высота из центра основании на сторону квадрата в основании будет равна (5/√2)/√2 = 5/2
Угол наклона боковой грани к плоскости основания это угол образованный высотой боковой грани к ребру в основании и проекцией этой высоты на плоскость основания. Высота грани к ребру в основании и проекцией этой высоты на плоскость основания образуют прямоугольный треугольник в котором катет противолежащий углу наклона боковой грани это высота пирамиды. А проекция высоты из вершины пирамиды к ребру основания на плоскость основания это второй катет.
Первый катет равен 5/√2, второй катет равен 5/2.
Тангенс угла равне отношению длин этих катетов т.е. (5/√2) / (5/2) = √2
Ответ тангенс угла наклона боковой грани к плоскости основания равен √2
Так как площадь равна S=а*b а периметр равен P=(а+b)*2 сумма а и b равна 28/2=14
ищем пару чисел которые дают в сумме 14 а произведении равно 33 получаем числа 3 и 11. Проверяем подставляя в формулы S=3*11=33 верно и P=(3+11)*2=28см тоже верно
Вроде так ,но почему то по теореме Пифагора не очень ответ получается
..................................................
2)ВК-высота треугольника АВС
4)СN-биссектриса треугольника BCF