Ромб ABCD, угол A= 30°. Опустим высоту BE на сторону AD; в получившемся прямоугольном треугольнике ABE гипотенуза AB=10, острый угол A=30°⇒катет BE, лежащий против угла в 30°, равен половине гипотенузы, BE=10/2=5. Итак, высота ромба равна 5, а сторона равна 10. Поскольку ромб является параллелограммом, его площадь вычисляется по формуле "произведение основания на высоту":
S=AD·BE=10·5=50
Ответ: 50
60 градусов - сумма двух равных углов в этом треугольнике (Так как если бы это были другие углы, то сумма была бы равно 150 градусов, следовательно 2 равных угла по 75 градусов. Тогда сумма двух углов не может быть равной 60 (ну раз 2 по 75)). Значит 1 угол = 2 углу = 60/2=30 градусов. Значит, 3 угол равен 180-60=120 градусов. Отношение углов равно 30/30 : 30/30 : 120/30= 1 : 1 : 4
Следовательно отновение углов первого треугольника равно отношению углов второго треугольника, следовательно треугольники подобны.
P.S. Я не знаю как подробней начало объяснить