Решение
sinx*cosx + 2sin²x = cos²x
sinx*cosx + sin²x - (cos²x - sin²x) = 0
sinx*cosx + sin²x - (1 - 2sin²x) = 0
sinx*cosx + 3sin²x - 1 = 0
sinx*cosx + 3sin²x - sin²x - cos²x = 0
2sin²x + sinx*cosx - cos²x = 0 делим на cos²x ≠ 0
2tg²x + tgx - 1 = 0
tgx = t
2t² + t - 1 = 0
D = 1 + 4*2*1 = 9
t₁ = (-1 - 3)/4
t₁ = - 1
t₂ = (-1 + 3)/4
t₂ = 1/2
1) tgx = - 1
x₁ = - π/4 + πk, k ∈ Z
2) tgx = 1/2
x₂ = arctg(1/2) + πn, n ∈ Z
4) ОДЗ: x>=-1. Неравенство нестрогое, значит:
x-5<0 <=> x<5, и икс не равен -1.
Учитывая ОДЗ получаем, что икс принадлежит интервалу (-1;5)
5) F(x)=(x^-4)/-4)-2x+C=-1/(4*x^4)-2x+C
Ответ и объяснение смотри во вложении:
Не забудь поблагодарить за ответ и сделать его лучшим)