Сумма углов треугольника 180°.
Углы при основании равнобедренного треугольника равны.
1.
Один из углов равнобедренного треугольника равен 40°.
а) угол при вершине равен 40°.
Углы при основании: (180° - 40°)/2 = 70°
Ответ: 40°, 70°, 70°.
б) угол при основании 40°.
Угол при вершине: 180° - 2·40° = 100°
Ответ: 40°, 40°, 100°.
2.
Один из углов равен 60°.
а) угол при вершине 60°.
Углы при основании: (180° - 60°)/2 = 60°
Ответ: 60°, 60°, 60°.
б) угол при основании 60°.
Угол при вершине: 180° - 2·60° = 60°
Ответ: 60°, 60°, 60°.
Стоит запомнить: Если в равнобедренном треугольнике любой угол равен 60°, то это равносторонний треугольник.
3.
Один из углов равен 100°.
Тупой угол в равнобедренном треугольнике может быть только при вершине, так как углы при основании равны, а два тупых угла в треугольнике не может быть (сумма будет больше 180°).
Углы при основании: (180° - 100°)/2 = 40°
Ответ: 100°, 40°, 40°.
По-видимому, речь идет о канонической форме уравнения параболы
1)Тогда H=a=36=корень из 2x^2 1296=2x^2 x=18√2=H R=a/2=18√2/2=9√2
2)H=П
пусть координаты центра какие то (x;y) и обозначим ее О ,
Угол между АВС и SА - угол SAO ( точка О - центр пересечения диагоналей в квадрате АВСD). SO - высота пирамиды. Рассмотрим треугольник SOA: SO - перпендикуляр, SA - наклонная, AO - проекция наклонной. Т.к. углом между прямой и плоскостью явл. угол между прямой и её проекцией на эту плоскость, то угол SAO - искомый угол.