Из центра окружности проведем OB и OC.
Из рисунка видно, что центральный угол BOC равен 90 градусам, значит вписанный угол BAC будет равен его половине, т.е. 45 градусам.
Также из рисунка видно, что AB=AC, следовательно треугольник ABC равнобедренный.
Соответственно угол ABC равен углу ACB и равны они (180 - 45) / 2 = 67.5
Ответ: 67.5 градусов
Ответ:
14 ед.
Объяснение:
14 ед.
Объяснение:
Дано: Δ АВС - равнобедренный, АВ=ВС, ∠В=120°, АН - высота, АН=7. Найти АС.
Решение:
В тупоугольном треугольнике высота падает на продолжение противоположной стороны (см. чертеж).
Имеем Δ АСН - прямоугольный.
∠С=(180-120):2=30°
Против угла 30° лежит катет АН=7, поэтому гипотенуза АС=2АН=7*2=14 ед.
1) Строим данный ∠А, на одной из сторон откладываем сторону АВ.
Дальше придется рассмотреть различные случаи.
2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение.
3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи:
ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А.
ВС>АВ, будет одно решение.
4) Пусть ∠.А<90°, острый угол.
Тут будут разные случаи в зависимости от длины ВС:
а) ВС1⊥АС1, одно решение;
б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4).
в) ВС2≥АВ одно решение на фото.
.
......................................................................................
V = a³
V = 10³ = 1 000 cм³ объём куба
Объёмы куба и шара равны 1 000 см³
V = 4/3 π R³ объём шара
R³ = 3V/4π
R³ = (3*1 000)/4 * 3) = 1 000/4 = 250
R = ∛250 = ∛ (125 * 2) = 5∛2 - ответ