Медиана в прямоугольном треугольнике, проведённая к гипатенузе, равна половине гипатенузы.
АВ^2=АС^2+ВС^2
АВ^2=1+81
АВ^2=82
АВ=корень из82
Медиана СН=1/2*корень из 82
СН = корень из 82/2
5 самая простая. CAD=60, AC=AD.
Это значит, что тр-ник ACD равносторонний.
В силу симметрии всей пирамиды расстояния BA=BC=BD.
Угол <(AC;a) =
6) Сложнее.
Тр-ник ABC имеет углы 90°,45°,45°.
AB=BC; AC=BC*√2
Тр-ник ABD имеет углы 90°,60°,30°,
AD=BD*2; AB=AD*√3/2=BD*√3
Получаем AB=BC=BD*√3=x
AC=x*√2; AD=2x/√3
BC=x; BD=x/√3; CD=8; По теореме косинусов
CD^2=BC^2+BD^2-2*BC*BD*cos(CBD)
8^2=x^2+x^2/3-2x*x/√3*√3/2
64=x^2+x^2/3-x^2=x^2/3
x^2=64*3; x=8√3
AC=x*√2=8√3*√2=8√6
AD=2x/√3=2*8√3/√3=16
7) Обозначим ребра AB=BC=CD=DA=MA=MB=MC=MD=a.
Центр квалрата обозначим O.
Диагональ квадрата ABCD: d=AB*√2=a*√2.
Половина диагонали квадрата d/2, высота пирамиды H и боковое AM=a образуют прям-ный тр-ник.
Угол <(AM; ABC)=cos(OAM)=AO/AM=(a*√2/2):a=√2/2
8) AB=CD=4√2; AK=BK=AB/2=2√2; BC=4; MC=6√2.
CK=√(BC^2+BK^2)=√(4^2+2^2*2)=√(16+8)=√24=2√6
MK=√(MC^2+CK^2)=√(6^2*2+24)=√96=4√6
Угол <(MK; ABC)=cos MKC=CK/MK=(2√6):(4√6)=1/2
1.
sinА = cosВ ( так как сиусА - это отношение CВ/АВ и косинус В - это отнош. CВ/АВ)
косинусВ=3/5
2.
косинусА = АС/АВ.
составим пропорции 3/5 = AC/20, значит 60 = 5АС, отсюда АС = 12
найдем ВС по теореме пифагора:
СВ(в квадрате) = 400 - 144 = 256
CВ = 16
Если окружность описана около треугольника, то углы треугольника являются вписанными в окружность. Они по 60°, значит, дуга, на которую они опираются, 120°. Угол с вершиной в центре треугольника - центральный, и его величина равна величине этой дуги, т.е.120°.