11)
∠L,M,N,K,О=90°
12)
Допустим, что центр- О
тогда угол АОЕ=∠FОЕ-∠FОА=180°-150°=30°
угол В=90°
Угол D=90° т.к. В=90°
∠ЕОС=180°-∠АОЕ=180°-30°=150°
∠FОС=180°-∠ЕОС=180°-150°=30°
∠FОС и ∠ АОЕ - вертикальные
∠DFO=180°-70°=110°
∠ОАЕ=180°-150°=30°
Дано: ΔАВС, ∠А=90°, ∠С=50°, ВD - биссектриса угла BD.
Найти: ∠D
Решение:
180 - (90+50) = 40° (сумма углов треугольника = 180°)
40:2=20°.
Ответ: 20°
Пусть в трапеции АВСД основания ВС=а, АД=в, АС и ВД - диагонали, О - точка их пересечения, ВН - высота трапеции, М - точка пересечения высоты ВН и искомого отрезка КЛ.
По условию КЛ параллельна ВС, следовательно ΔАВД подобен ΔКВО, а ΔАВС подобен ΔАКО. Т.к. в подобных треугольниках высоты пропорциональны сторонам, на которые они опущены, то КО/АД=ВМ/ВН, КО/ВС=МН/ВН.
Отсюда КО/АД+КО/ВС=ВМ/ВН+МН/ВН
<span>КО*(ВС+АД)/АД*ВС=(ВМ+МН)/ВН, </span>
т.к. ВМ+МН=ВН, то
КО*(а+в)/ав=1
КО=ав/(а+в)
Аналогично, из подобия ΔДОЛ и ΔДВС, а также Δ ОСЛ и ΔАСД, находим ОЛ:
ОЛ=ав/(а+в)
<span>КЛ=КО+КЛ=ав/(а+в)+ав/(а+в)=2ав/(а+в)</span>