Медиана делит сторону на два одинаковых отрезка. Находишь косинус угла напротив медианы. Потом снова по теореме косинусов находишь уже медиану, так как косинус напротив ты знаешь, одна сторона дана, а вторая делится медийной пополам.
1) Если диагональ правильной четырехугольной призмы образует с плоско-ной основания угол 45 градусов,, то она как гипотенуза образует прямоугольный треугольник.
Высота призмы и диагональ основания равны между собой (из за угла 45°) и, как катеты, равны 8*sin 45° = 8*(√2/2) = 4√2 см.
Они же являются сторонами в данном случае квадрата диагонального сечения призмы. S = (4√2)² = 32 см².
2) По аналогии с пунктом 1) диагональ основания d и высота Н параллелепипеда равны 6*(√2/2) = 3√2 см.
Стороны основания равны:
- меньшая: d*cos 60° = 3√2*(1/2) = 3√2/2,
- большая: d*sin 60° = 3√2*(√3/2) = 3√6/2.
Периметр основания равен:
Р = 2*3√2/2 + 2*3√6/2 = 2*3√2/2 + 2*3√2√3/2 =(6√2/2)(1 + √3).
Площадь боковой поверхности равна:
Sбок = РН = (6√2/2)(1 + √3)*(3√2) = 18(1 + √3) см².
Параллельно АВ через точку Д проведём прямую, затем параллельно ВД через точку А проведём прямую. Они пересекутся в точке Е.Соединим С и Е. В треугольнике САЕ поусловию угол САЕ=120,АС= а. АЕ также=а, поскольку=ВД(по построению).Из вершины А равнобедренного треугольника АСЕ проведём высоту АК, поскольку треугольник равнобедренный она же будет и биссектрисой. Тогда угол САК=углуЕАК=60. Следовательно угол АСК=углуАЕК=30. Против угла 30 градусов лежит катет вдвое меньший гипотенузы, значит АК=а/2. СК=КЕ=корень из(а квадрат-(а/2)квадрат)= а(корень из трёх делённое на 2). Тогда СЕ=СК+КЕ=а*корень из 3. СД= корень из (СЕквадрат+ДЕквадрат)=корень из( 3а квадрат+а квадрат)=2а.
Перемножаем все числа, потому что объём равен произведению площади на высоту.
2х3х8=48