АМ:ВМ=2:5, значит можем сказать, что отрезок АМ=2*х, а отрезок ВМ=5*х. Тогда сторона АВ=7*х. АN:СN=4:7, значит можем сказать, что отрезок АN=4*y, а отрезок СN=7*y. Тогда сторона АC=11*y.Площадь треугольника AМN по формуле равна (1/2)*АМ*AN*SinA = (1/2)*2х*4y*SinA.Площадь треугольника ABC равна (1/2)*АB*AC*SinA = (1/2)*7х*11y*SinA.Разделим первое выражение на второе. Тогда Samn/Sabc=8/77, откуда Sabc = Samn*77/8=16*77/8 = 154кв.см. Площадь четырехугольника МВСN равна разности площадей Sabc-Samn = 154-16=138кв.см.
Ответ: площадь четырехугольника МВСN = 138кв.см.
Держите решение..........................
Попробуй решить по похожей, просто щаменя цифры 3 и 12 на 8 и 18, и все получится. Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Высота делит основание пополам(т.к. равнобедренный)
Проведя высоту, получим прямоугольный треугольник, у которого гипотенуза=13, а катет 5.
По теореме Пифагора:
Высота ^2 = гипотенуза^2-катет^2
169-25=144
Извлекаем квадрат = 12
Ответ:12.