а) Пусть катет равен х см, тогда по теореме Пифагора :
х² + х² = 8²
2х² = 64
х² = 32
х = √32 = 4√2
Площадь прямоугольного треугольника можно найти по формуле S = 0.5 * a * b (а и b это катеты)
S = 0.5 * 4√2 *4√2 = 4*4 = 16 (см²)
б) 1,4дм = 14 см
Пусть катет будет равен х см, тогда по теореме Пифагора :
х² + х² = 14²
2х² = 196
х² = 98
х = √98 =7√2 см
S = 0.5*7√2 *7√2 = 7*7 = 49см² = 0.49 дм²
в)пусть катет также будет равен х м , по теореме Пифагора :
х² + х² = с²
2х² = с²
х² = с²/2
х = с/√2
S = 0.5 * (c/√2) * (c/√2) = c²/4 (м²)
Пусть 1 угол=X,то 2-й =40+X
2X=180-40
2x=140
x=70
1-й угол равен70,второй 40+70=110
21 дм.
По парам пропорциональные значит, что YZ/CA = KM/EF
YZ/3 = 63/9
YZ/3 = 7
YZ = 21
Центр описаной окружности О находится на середине гипотенузы. Радиус токой окружности равна половине гипотенузы. Найдем длину гипотенузы по теореме Пифагора. с²=4²+(2√3)²=16+12=28.
R=с/2=28/2=14.
Длина окружности равна 2πR=2·14π=28π.
Площадь круга равна S=πR²=14²π=196π кв ед.