т.к. AB=BC, то точка D равноудалена от концов отрезков АB и BC => P ABCD=6.1*2+8.9*2=30
1) Количество граней = n + 2.
n - боковые грани, 2 - основания призмы.
2) Количество ребер = 3n.
Если посмотреть на любую призму, то сразу видно, что из любой вершины выходит по 3 ребра - 1 боковое и 2 в основании.
3) Количество вершин = 2n.
У каждого основания будет n вершин (например, у шестиугольника их 6), а всего оснований у нас 2.
__________________________________________________
Треугольная призма имеет 3 + 2 = 5 граней, 3 * 3 = 9 ребер и 2 * 3 = 6 вершин.
Четырехугольная призма имеет 4 + 2 = 6 граней, 3 * 4 = 12 ребер и 2 * 4 = 8 вершин.
Шестиугольная призма имеет 6 + 2 = 8 граней, 3 * 6 = 18 ребер и 2 * 6 = 12 вершин.
Столб и его тень - катеты прямоугольного треугольника, подобного треугольнику образованному катетами "шест" и "тень от шеста". При этом коэффициент подобия = 9/1,5 = 6. Отсюда получаем высоту столба = 2*6 = 12 м.
Т.к. ΔАВС - равнобедренный, то АВ = ВС = 2КВ = 2ВЕ
Следовательно, ΔАВЕ = ΔСКВ (По равенству двух сторон и общего угла ∠АВС между ними).
Тогда: АЕ=СК и ∠ВАЕ = ∠ВСК
Кроме того, в ΔАЕС и ΔАКС:
АС - общая, АЕ = КС, АК = СЕ
То есть ΔАЕС = ΔАКС по трем сторонам.
Тогда ΔАОС - равнобедренный и АО = ОС
Так как АЕ = КС и АО = ОС, то: ОК = ОЕ.
Таким образом, ΔАОК = ΔСОЕ по трем сторонам.
В правильной пирамиде высота её проходит в основании через точку пересечения медиан (они же и высоты)
Этой точкой медианы делятся в отношении 2:1, считая от вершины треугольника основания.
Рассмотрим сечение пирамиды и описанного около неё шара, проходящее через боковое ребро пирамиды.
Медиана (высота) основания равна 3*cos 30° = 3*√3/2.
В сечении будет прямоугольный треугольник.
Один из катетов его - это 2/3 медианы основания. Он равен
3*√3/2*(2*3) = √3.
Второй катет - это высота пирамиды. Она равна √3*tg 30° = √3*(1/√3) = 1.
Боковое ребро - это гипотенуза в рассматриваемом треугольнике.
Оно равно 1 / sin 30° = 1 / (1/2) = 2.
Центр шара, как и центр описанной вокруг рассмотренного треугольника окружности, находится на пересечении перпендикуляра к середине бокового ребра и высоты пирамиды.
Эта точка будет находиться ниже основания пирамиды.
Радиус шара равен 1 / sin 30° = 1 / (1/2) = 2.