Вершиной равнобедренного треугольника называется угол между равными боковыми сторонами, а его биссектриса является высотой, образующей с основанием прямые углы. Так что правильнее было писать так: "Биссектриса, проведённая к боковой стороне, образует с ней углы 75 и 105 градусов. Найти острые углы треугольника."
Теперь решение.
В тр-ке АВС с основанием АС, АМ - высота.
Пусть ∠А и ∠С равны х, тогда ∠МАС=х/2.
В тр-ке АСМ ∠АСМ+∠МАС=х+х/2=1.5х.
1) Если ∠АМС=75°, то 75+1.5х=180,
1.5х=105,
х=70°.
∠А=∠С=70°, ∠В=180-2·70=40° - это ответ.
2) Если ∠АМС=105°, то 105+1.5х=180,
х=50°.
∠А=∠С=50°, ∠В=180-2·50=80° - это ответ.
Так как треугольник АВС прямоугольный и катет равен половине гипотенузы, следует что угол В=60°
Видно, что нижнее основание трапеции 2R, боковые стороны и верхнее основание - R
Периметр трапеции 5R
5R = 60
R = 12 см
D = 2R = 24 см
У меня два варианта решения 1) 2) боковая сторона равна 6