Два основания --прямоугольники 6х5 --площадь каждого = 30 см²
задняя стенка --прямоугольник 5х5 --площадь = 25 см²
две боковые "с"-образные стенки --каждая площадью =
=5*4+2*1+2*1 = 24 см²
и "с"-образное углубление --площадь = 5*3+2*5+2*5 = 35 см²
и плюс 2 узкие полосочки над и под углублением = 2*5*1 = 10 см²
Sполной поверхности = 2*30 + 25 + 2*24 + 35 + 10 = 130+48 = 178 см²
------------------------------
можно и чуть иначе:
из полной поверхности "целого" параллелепипеда
Sполн.пов. = Sбок.пов.+2*Sосн. = Н*Росн + 2*30 =
= 5*2*(5+6) + 60 = 110 + 60 = 170 см²
можно вычесть
площади 2 боковых вырезов 2*(2*3) = 12 см²
и добавить
площади "верха и низа углубления" = 2*(2*5) = 20 см²
170 + 20 - 12 = 170 + 8 = 178 см²
S=a²√(3)/4 =>
a²=4S/√3=4*12√(3)/√3=48 (см)
a=4√3 (см)
r=a√(3)/6=4√(3)*√(3)/6=2 (см) - радиус вписанной окружности
S=пr²=3,14*4=12,56 (см²) - площадь вписанного круга
2*2=4 (см) - сторона квадрата
S=16 (см²) - площадь квадрата
1. По правилу определения ромба мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
Вектор Nk=(6-5;6-3)=(1;3)
вектор Kp=(-3;-1)
ВЕКтор РМ=(1;3)
Теперь объединяем это фигурной скобкой и пишем , следовательно MN=NK=KP=PM, а из этого следуют что четырёх угольник MNPK - квадрат, по определению.
2. По свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(3;3)
NP=(-2;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению