Цилиндра - круг и прямоугольник
конуса - треугольник и круг
шара - круг
2Пусть параллельные прямые А и В пересечены секущей MN.Докажем, что накрест лежащие углы, например 1 и 2,равны.
<span> Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение невнрно и угол 1 = 2. </span>
Нужно найти точки пересечения , затем длину хорды
Ответ
180 градусов, так как мы можем представить это образно...и только в этом случае они будут лежать вдоль одной прямой.
<u><em /></u><em>пусть х-угол АВО, тогда угол ОАВ 4х, АОВ=90 по определению. Отсюда получим уравнение х+4х+90=180
х=18- угол АВО
18*4=72- угол ОАВ
</em>