Ответ:6
Объяснение:...................
Пусть точка пересечения AD и MK обозначена E.
Если провести прямые DP II MK; BQ II MK; точки P и Q лежат на продолжении AC за точку C, и обозначить KC = x; то
AK = 2x;
Далее, из подобия треугольников AMK и ABQ
AK/KQ = AM/MB = 2/3;
KQ = 3x;
Поэтому CQ = 2x;
Из подобия треугольников CDP CBQ
CP/PQ = CD/DB = 2;
поэтому CP = (2/3)*CQ = 4x/3; KP = KC + CP = 7x/3;
из подобия треугольников AEK и ADP
AE/ED = AK/KP = 2x/(7x/3) = 6/7;
вроде так, проверяйте... такие задачи решаются тем же методом, каким доказывается прямая теорема Менелая.
Окружность можно вписать в трапецию только в том случае усли сумма боковых сторон = сумме основанийПериметр / 2 = сумма оснований = 128 /2 =64<span>Средняя линия = сумме оснований/2 = 64/2=32</span>
Есть параллелограмм ABCD и диагональ BD=4см, угол ABD=CDB=90°, угол CBD=ADB=60°.
Рассмотрим треугольник ABD, в нем угол В=90°, угол D=60°, значит угол А=30°, в прямоугольном треугольник катит,лежащий против угла 30°, равен половина гипотинузы, так как кактет BD лежит против угла 30° и равен 4см, значит на гипотенуза AD равняется 8. По теореме Пифагора находим АВ, AB^2=64-16=48, AB=4√3cм.
Sabcd=AB×AD×sinA=4√3×8×1/2=16√3
1- ВЕРНО (-*+=-)
2- Х ОТРИЦАТЕЛЬНОЕ ( -НА- =+ ) => У-Х БОЛЬШЕ 0 ⇒ НЕВЕРНО
3- Х² = ПОЛОЖИТЕЛЬНОЕ ЧИСЛО * НА У >0
4- У>Х У+Х>0