Есть формула площади кругового сектора.
S=πr²•α/360°, где α - градусная мера дуги, Её можно вывести, разделив площадь круга на 360° ( узнать чему равна площадь сектора с углом 1°), и затем умножить на величину градусной меры дуги сектора.
Так как 120° =1/3 окружности, то и площадь сектора с таким углом равна одной трети круга.
S=π•144:3=48π см²
Вот.Как-то так.Просто по логике так но это не точно.
S общ = S основания + S бок поверхности
S основания = пR^2
S бок поверхности = 2пRh
пR^2 = 40 - 28 = 12
R^2 = 12/п
R = 1,95
Через 3 точки можно провести плоскость, и только одну.
Стороны сечения куба этой плоскостью будут лежать на гранях куба.
Данное сечение куба - трапеция КЕВ1С
с большим основанием В1С и
меньшим ЕК.
В1С= диагональ грани и равна<span> а√2</span> по свойству диагонали квадрата.
ЕК=(а/2)√2 на том же основании
КС²=ДС²+КД²=а²+ 0,25а²=1,25а²
Проведем высоту КН трапеции.
Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.
НС=(В1С-КЕ):2=(а√2-0,5а√2):2=0,25а√2
КН²=КС² - НС²=1,25а²-(0,25а√2)²=1,25а²-0,125а²=<span>1,125а²
</span>
КН=√(1,125а²)=1,5а√0,5
Площадь трапеции равна произведению высоты на полусумму оснований:
S=KH*(EK+B1C):2=
=1,5а√0,5*(0,5а√2+а√2):2=
=(1,5а√0,5)*0,75а√2=
=1,5а*0,75а*√(0,5*2)=1,125а²
------
Для нахождения площади трапеции существует не только та формула, которую в большей части случаев мы используем.
В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны.
По ней площадь получается та же, что по обычной формуле через назождение высоты.
<span>S=1,125а²
</span>