Задача решается по теореме Пифагора.
АВ²=АС²+СВ²
АВ²=1.5²+0.8²
АВ²=2.25+0.64
АВ²=2.89
АВ=√2.89
АВ=1.7
Вот держи ) поставь "спасибо"
ΔF1E1D1:F1E1=D1E1=34,<F1E1D1=120
F1D1²=:F1E1²+D1E1²-2*:F1E1*D1E1*cos<F1E1D1=
=34²+34²-2*34²*(-1/2)=3*34²
F1D1=34√3
ΔD1DF1:<F1D1D=90,DD1=34,F1D1=34√3
tg<D1DF1=F1D1/D1D=34√3/34=√3
<F1DD1=60
Дан ромб АВСД. диагональ АС пересекает ВД в т.О
АС-меньная диагональ.УголВ=углу Д=60градусов.
Диагонали ромба делят углы пополам=> уголАДО=60:2=30градусов
диагонали ромба перпендикулярны => треугольник АОД прямоугольный.
Катет, лежащий напротив угла 30 градусов равен половине гипотенузы => АО=49:2=24,5
Диагонали ромба точкой пересечения делятся пополам => АС=2*АО=2/24,5=49
Можно и другим способом:
Треугольник АСД - равносторонний, т.к. он равнобедренный (АД=ДС по св-вам ромба), углы при основании равны, а третий угол =60градусов => углы при основании тоже по 60 градусов => АД=АС=49
Если перпендикулярна АД то
АД=1*3/v3=3/v3
sinA=v(1-(1/v3)^2)=v(1-1/3)=v(2/3)=v2/v3
площадь=3*3/v3*v2/v3=9*v2/3=3v2