Пусть в прямоугольной трапеции ABCD AD=22, BC=6, CD=20. Проведём высоту CH. Четырехугольник ABCH - прямоугольник, так как все его углы прямые. Тогда AH=BC=6, DH=AD-AH=22-6=16. Треугольник CDH прямоугольный, его гипотенуза CD равна 20, а катет DH равен 16. Тогда второй катет CH по теореме Пифагора равен √20²-16²=√400-256=√144=12. Площадь трапеции равна произведению полусуммы оснований на высоту, тогда S=(22+6)/2*12=14*12=168 см².
Точка О - центр пересечения медиан равностороннего треугольника. она же центр описанной окружности
R = OA = AB/корень(3)=6/корень(3)
в треугольнике АОМ
ОМ = 6
OA = 6/корень(3)
значит угол МАО = arctg(MО/ОА)=arctg(6/(6/корень(3)) = arctg(корень(3)) = 60