<u><em>Данный треугольник АВС - прямоугольный</em></u>,
АВ - гипотенуза,
АС и ВС - катеты.
На эту мысль наводит отношение длин катетов и стороны АВ.
ВС=АВ:2
Если предположение верно, то данное ниже равенство будет верным:
АС=√(АВ²-ВС²)
Подставим известные значения сторон:
4√3 =√(64-16)
√(64-16)=√48=4√3
Итак, мы доказали, что <u><em>треугольник АВС прямоугольный.</em></u>
Продолжим прямую ВД за АС и проведем к ней перпендикуляр.
Он равен расстоянию от А до ВД и является высотой треугольника АВД.
Точку пересечения обозначим К.
<em>Если в прямоугольных треугольниках острый угол одного равен острому углу другого, то такие треугольники подобны.</em>
Углы при Д в них вертикальные и потому равны.
Углы АКД=ВСД=90°
<em>Δ АДК и Δ ВСД подобны</em>.
АД=ДС по условию задачи.
АД и ДВ - гипотенузы этих треугольников.
В треугольнике АКД известна сторона АД.
В треугольнике ВСД известны два катета.
Найдем ВД по теореме Пифагора:
ВД²=ВС²+ДС²
ВД =√(16+12)=√28=2√7
ВД:АД=ВС:АК
(2√7):2√3=4:АК
8√3=2АК ·√7
АК=4√3:√7
АК является высотой треугольника АВД, проведенной к стороне ВД и в то же время расстоянием от А до ВД.
<em>S АВД</em>=2√7·4√3·√7 =<em>8√3 см²</em>
<em>Расстояние от А до ВД=АК=(4√3:)√7</em>
сума углов трапеции 360 у равнобедренной по 2 одинаковых угла отсуда
3)
т.к. АВ=СД=10см, угол АВД=углу ВДС, ВД— общая сторона ∆АВД и ∆СДВ, то ∆АВД=∆СВД(по1 признаку)
4)
угол М
1) АВ=АС-СВ
АВ=9-4=5см
2)СD=BD-CB
CD=12-4=8cм
3) AD=AB+CB+CD
AD=5+4+8=17см
АА1-СА1=СС1-СА1
из этого следует то, что АС=А1С1,
а из этого следует то, что эти треугольники равны, по двум катетам