Пусть АВСD - данная прямоугольная трапеция, АВ||CD; AD=8 см, S(ABCD)=120 кв.cм, CD=AB+6
Проведем высоту ВК=AD=8 см, тогда ABKD - прямоугольник, ВКС - прямоугольный треугольник с прямым углом К
AB=DK;
Площадь трапеции равна половине произведения суммы ее оснований на высоту:
S(ABCD)=(AB+CD)*AD:2;
(AB+AB+6)*8:2=120;
(2AB+6)*4=120;
2AB+6=120:4;
2AB+6=30; /:2
AB+3=15;
AB=15-3;
AB=12;
CD=AB+6=12+6=18;
DK=CD-DK=18-12=6;
по теореме Пифагора
ответ: 12 см,10 см, 18 см, 8 см - стороны трапеции
Построим прямоугольный треугольник АБС
Прямой угол Б, угол С-30°, угол А нам не известен
АС - гипотенуза , АБ - 3 метра
Так как катет , лежащий напротив угла в 30 ° равен половине гипотенузы, то гипотенузы равна 3×2=6 метров , ну и длина экскаватора равна 6 метрам
Условие:
угол ABC
малая окружность(О2;R2)
большая окружность(O1;R1=23)
Решение:
По свойству секущей, угол BL2O2 равен углу ВК2О2, углу ВL1О1 и углу ВК1О1 и равен 90 градусам.
Из четырехугольников L1BK1O1 и L2BK2O2 углы L1O1K1 и L2O2K2 равны 120 градусам из следующего уравнения: 360-2*90-60=120.
Проведем бис-су ВО, которая пересечет центры окружностей О1 и О2.
По свойству катета, лежащего против угла в 30 градусов, гипотенуза прямоугольного треугольника О1В равна двум катетам или радиусам большой окружности и равна 46.
Из прямоугольного треугольника К2О2В гипотенуза О2В равна двум катетам К2О, как и в случае с треугольником К1О1В.
Точка D общая для обеих окружностей.
O1D=R1=23.
O1B=O1D+DB
DB=R1+O2B.
O1B=R1+R2+O2B
O1B=R1+R2+2R2
3R2=O1B-R1
R2=(O1B-R1)/3
Подставим значения:
R2=(46-23)/3
R2=23/3.
Найдем расстояние от точек касания окружностей до вершины угла:
По синусу угла ВО1К1 К1В =(корень из 3)/2*46=23*(корень из 3)
По синусу угла ВО2К2 К2В =(корень из 3)/2*23=11,5*(корень из 3).
<span>а какое тут решение, если нет ни одной цыфры??????????</span>
<span>1) Рисуешь произвольный катет АВ ( замеряешь его циркулем или линейкой )</span>
<span>2)у точки А откладываешь прямой угол ( и из точки А откладываешь тоже расстояние)</span>
<span>3) с другой стороны катета откладываешь острый угол В</span>
<span>4) провела прямые прямые </span>
<span>5) прямые пересекутся в точке С </span>