1) R=а·b·с/4S. S=√р(р-а)(р-b)(р-с); р=0,5(а+b+с).
р=0,5(9+10+17)=0,5·36=18.
S=√18·9·8·1=36 см².
R=(9·10·17)/4·36=1530/144=10,625 см
2)Проти найменьшої сторони трикутника лежить найменший кут. Застосуємо теорему косинусів
а=8 см, b=18 см, с=24 см, α- найменший кут.
а²=b²+с² - 2b·с·cosα$
64=324+576-2·18·24·cosα.
64=900-864·cosα,
896cosα=836,
cosα=836/896=0,9330; α≈21°.
3) см фото. ВК =h.АВ=8, ВС=26, АС=30.
Пусть АК=х; СК-60-х.
ΔАВК. ВК²=АВ²-АК²=64-х².
ΔВСК. ВК²=ВС²-СК²,
ВК²=676-900+60х-х².
64-х²=676-900+60х-х²,
60х=288,
х=4,8. АК=4,8.
ΔАВК. ВК²=64-4,8²=64-23,04=40,96.
ВК=√40,96=6,4 см.
Призма правильная шестиугольная - состоит из 6 правильных треугольников со стороной=3, площадь треугольника=сторона в квадрате*корень3/4=9*корень3/4, площадь 1 основания=6*9*корень3/4=27*корень3/2,
площадь боковая=периметр шестиугольника*высота=6*3*8=144
площадь полная=площадь боковая+2*площадь основания=144+2*27*корень3/2=144+27*корень3=9*(16+3*корень3)
Найдем сторону ромба.
52/4=13 см, так как ромб-это параллелограмм, у которого все стороны равны.
Далее половинки диагоналей являются катетами прямоугольного треугольника с гипотенузой, которая является одновременно и стороной ромба, равной 13 см. Половинки диагоналей ромба также относятся как 5:12, как и диагонали ромба.
Тогда по теореме Пифагора:
5x и 12x-катеты прямоугольного треугольника, они же половинки диагоналей ромба.
Тогда половинки диагоналей равны 5 см и 12 см.
Прощадь ромба найдем, как сумму площадей 4-х прямоугольных треугольников.
см.
<span><em>Если все боковые грани пирамиды одинаково наклонены к плоскости основания, а высота проходит внутри пирамиды, то высота проходит через центр вписанного в основание пирамиды круга.</em>
Радиус вписанного в трапецию круга равен половине высоты этой трапеции - основания пирамиды.
Высота ВМ трапеции равна боковой стороне, умноженной на синус 45º.
h=BM=4√2•√2/2=4 (см)
</span>⇒ ОН=ВМ:2=2 (см)
<span>Т.к. высота пирамиды перпендикулярна ее основанию, ∆ КОН - прямоугольный. КО=ОН•tg30º=2:√3
V=S•h:3
В равнобедренную трапецию вписан круг, </span>⇒ суммы оснований равны сумме боковых сторон, а полусумма оснований равна одной боковой стороне. (свойство)
Площадь трапеции S=h•(AD+BC):2=4•4√2=16√2 см²
V=¹/₃(16√2)•2:√3=¹/₃•(32√2):√3=32√6:9 см³
Угол можно найти через скалярное произведение векторов
аb=׀а׀*׀b׀*cos(a,b)
ab=-1*2+1/2 *3=-2+1,5=-0,5
׀a ׀ =
=√4+9 = √13
׀b׀<span> =
</span>=√1+1/4 = √5/2<span>
cos(a,b)=-0,5 / </span>√13 * √5/2 = -1/ <span>√65
</span>Угол тупой (т к cos(a,b)<0), (a,b)=arccos(-1/√65)=π-arccos(1/√65)