Параллелограмм АВСД: АВ=СД, ВС=АД, а также АВ||СД и ВС||АД.
АЕ=ЕВ=АВ/2=СД/2
Проведем высоту ВН к стороне СД
Площадь параллелограмма
Sавсд=ВН*СД
ВН*СД=6
Площадь трапеции
<span>Sевсд=ВН*(ЕВ+СД)/2=ВН*(СД/2+СД)/2=3ВН*СД/4=3*6/4=4,5</span>
<span>обозначим сторону треугольника а, сторону квадрата с, радиус круга R. из сойств описанной окружности R=a/2sin60=a/3^1/2, R=2^1/2*c/2, отсюда a=R*3^1/2, c=R*2^1/2. прощадь треугольника S1=(a/2)(a3^1/2)/2=3/4*R^2*3^1/2, площадь квадрата S2=c^2=2R^2. по условию S2-S1=18,5. подставив найденные значения площадей получим уравнение из которого находим R. площадь вписанного шестиугольника равна S3=3/2*R^2*3^1/2</span>
Диагонали ромба равны 16 и 30 сантиметров. Найти периметр ромба.
Дано: АВСД-ромб АС и ВД-диагонали АС=16 см ВД=30 см
Найти: Р-периметр АВСД
Решение:1) АС пересекается с ВД в точке О Треугольник АОВ-прямоугольный. т.к. известно, что диагонали ромба взаимно перпендикулярны.
По теореме Пифагора найдём сторону АВ.АВ=sqrt{OA^2 + OB^2}=sqrt{8^2+15^2}=sqrt{289}=17(см)
2)АВСД-ромб, следовательно все его стороны равны
Периметр Р=4*АВ=4*17=68(см) Ответ: 68 см
Вот написала как можно короче почерк не очень то но разберешься