Уравнение прямой проходящей через 2 точки
(x-x2)/(x2-x1) = (y-y2)/(y2-y1)
(x-3)*(2+6)=(y-2)*(3+1)
8x-24=4y-8
y=(2x-6+2)= 2x - 4 = 21*2 - 4 = 38
К (21,38) Ордината = 38
ABCD - ромб; BD = 60; O - точка пересечения диагоналей; OA = OC = √(50² - (60/2)²) = 40 AC = OA = 80 S(ABCD) = (1/2)·AC·BD = 2400 h =2r = S(ABCD)/AB = 48 r = h/2 = 24