∠А=90°-25°=65°
ВС=3/tg25°
AC=3/Sin25°
разность длин оснований равна 14 а сумма 28 (ну, раз можно вписать окружность, то суммы противоположных сторон равны). ПОэтому основания 21 и 7.
Для ускорения счета (который легко можно проделать общепринятым способом) я замечу, что трапецию можно разбить на прямоугольник с одной из сторон 7 и два прямоугольных треугольника с гипотенузами 13 и 15, одинаковым катетом и суммой других катетов, равной 14.
Сразу видно, что речь идет о Пифагоровых треугольниках (5, 12, 13) и (9, 12, 15).
Поэтому высота трапеции равна 12.
Если очень хочется сделать "как все" (что в данном случае правильно:)) - проведите высоты из вершин меньшего основания и запишите теоремы Пифагора для двух треугольников "по бокам". Полученная система легко решается. Решение я уже написал.
Площадь трапеции 28*12/2 = 168.
Треугольник АСD-прямоугольный и равнобедренный. По теореме Пифагора найдем одну из его равных сторон, для этого примем одну из сторон за х. 20 корней из 2 в квадрате=х в квадрате+х в квадрате, 800=2х в квадрате, х в квадрате=400, х=20 (это сторона квадрата).
Треугольник МВС-прямоугольный, СМ=25, ВС=20 (это сторона квадрата). По теореме Пифагора найдем ВМ. ВМ=СМ в квадрате-ВС в квадрате все под корнем. ВМ=25 в квадрате-20 в квадрате все под корнем. ВМ=15. АМ=АВ-ВМ=20-15=5.
АМСD-прямоугольная трапеция. S=0,5 (АМ+СD)*АD=0,5(5+20)*20=250
А)......................................................... правильный