Так как ДС = ДМ + МС, а ДМ/ДС = 3/8, то ДМ/МС = 3/5
а так как МЛ // ДЕ, то по теореме Фалеса ЕЛ/ЛС = ДМ/МС = 3/5
ЕС = 56 см
обозначим ЕЛ как 3х, а ЛС как 5х исходя из отношения ЕЛ/ЛС
имеем уравнение 3х+5х = 56
8х = 56
х = 7
ЛС = 5х = 5*7 = 35 см
Да отношения всех координат =2
7.AC,BC - катет AB=c - Гипотенуза
∠A+∠B+∠C=180°
∠A+45°+90°=180°
∠A=45° =>AC=BC=x
Теорема Пифагора:2x²=c² =>x²=c²/2
S=ah/2
S₁=S₂
S₁=x²/2
S₂=8*c/2
x²/2=8c/2 => x²=8c => c²/2=8c => c²=16c => AB=c=16
ОТВЕТ: AB=c=16
8.∠BAE=30°, ∠AEB=180°-60°=120°,∠ABE=∠BAE=30° =>AE=BE=x
ΔEBC : ∠EBC=180°-60°-90°=30° .EC=BE/2=x/2
x=2EC,EC=7=>x=7*2=14
ОТВЕТ: AE=14
Обозначим пирамиду МАВС. СВ=6 см
<span>Высота ВН перпендикулярна плоскости основания, поэтому треугольники, образованные боковыми ребрами, высотой и проекциями ребер, прямоугольные. В данном случае отношение их сторон из троек Пифагора (5:12:13), поэтому проекции боковых ребер равны 5 ( можно и по т.Пифагора найти). </span>
<span>АН=СН=ВН </span>⇒ <span>основание высоты МН пирамиды является центром описанной окружности ∆ АВС с радиусом, равным 5, </span>⇒
<span> гипотенуза АВ=2R=10 см. </span>
<span>По т.Пифагора ( или из отношения СВ:АВ=3:5) находим АС=8 см, это второй катет ∆ АВС. </span>