S=a^2*sinB
Углы - x+10x+x=180
12x=180
x=15
S=18^2*sin150=324*1/2=162
По теореме Пифагора
26 в квадрате=24 в квадрате+катет в квадрате
катет в квадрате=676-576=100
катет =10
S=24*10=240
Два треугольника PQC и PDC, общая сторона PC = x,
1 случай.
Сумма углов Ф = PQC и PDC равна 180<span>°, если PQCD выпуклый четырехугольник, поэтому
12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
</span>12^2 + 12^2 + 2*12*12*cos(Ф) = x^2;
Отсюда
3*(12^2 + 4^2) - 2*12*12*cos(Ф) = 3*x^2;
Поэтому
5*12^2 + 3*4^2 = 4*x^2;
x^2 = 196;
x = 8√3;<span>
2 случай.
Если PQ и DC пересекаются, при этом углы Ф = PQC и PDC равны (опираются на дугу PC)
</span>12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
12^2 + 12^2 - 2*12*12*cos(Ф) = x^2;
x^2 = 96;
x = 4√3;
Крайне неудобный интерфейс, набирать решения просто невозможно. А уж этот корень из 3, в строке x = 8√3; навсегда переехавший на другую строчку - это просто смешно. Я полчаса боролся, и победить сумел только, скопировав целиком строку из другого места.
А, еще и градусы съехали... вот не буду исправлять, пусть виновные любуются...
Т.к. радиус то средняя линия равна 4. значит один из катетов в два раза больше тоесть 8. находим другой катет по т. Пифагора. онтбудет равен 6
площадь равна 8*6/2=24