Трапеция ABCD; AD = 16 см.
Угол BAD = 30; Угол ADC = 90.
Так как ВD диагональ, образующая перпендикуляр со стороной BA, то треугольник ABD - прямоугольный.
По свойству катета против угла в 30 градусов:
Угол BAD = 30, AD=16, следовательно катет BD = 8 см.
Угол BCD = 90, ABC = 150.
Так как угол ABD = 90 градусов, то угол DBC = 150-90=60 градусов.
CDB = 30 градусов.
По свойству катета против угла в 30 градусов:
CDB = 30 градусов.
BD = 8 см. ВС = 4 см, как катет против угла в 30 градусов.
Средняя линия трапеции, обозначим её, как LK.
LK= BC + AD/ 2 = 4 + 16 / 2 = 10 см.
Ответ: LK = 10 см.
Если векторы можно взять в качестве ребер куба, то они должны быть перпендикулярны (скалярное произведение = 0 ) и иметь одинаковую длину
(a*b) = 2*(-2) + 1*2 + 2*1 = 0 - векторы перпендикулярны
|a|=|b|, то есть векторы имеют одинаковую длину равную 3
Третье ребро куба должно иметь длину 3 и быть перпендикулярным как вектору a, так и вектору b. Получаем систему уравнений
2x + y + 2z = 0
-2x + 2y + z = 0
x^2 + y^2 + z^2 = 9
Из суммы уравнений (1) + (2) получаем
y = -z
Из разности (1) - 2 (2) получаем
2x = y
Подставив эти тождества в третье получаем
x^2 + 4x^2 + 4x^2 = 9
9x^2 = 9
x = +-1
То есть третий вектор может быть (1, 2, -2) или (-1, -2, 2)
Если нужно найти только стороны.
Пирамида правильная, следовательно, её основания <u>квадраты</u> .
Сделаем рисунок.
Проведем диагонали оснований АС и КМ в той же плоскости, в которой проведена диагональ усеченной пирамиды.
<span>Ребра правильной пирамиды равны, основания пирамиды параллельны, ⇒ КМ || АС, и<u> АКМС - равнобедренная трапеция. </u>
</span>МН - высота пирамиды и трапеции.
Диагонали оснований =диагонали квадратов, и делят их прямые углы пополам. <span>Стороны большего основания равны
АС*(sin 45°).
</span>АС=АН+НС
<span>АН=√(АМ²-МН²)=√(11-7²)=6√2
</span>НС=√(МС² -МН²<span>)=√(9²-7²)=4√2 </span><span>АС=6√2+4√2=10√2
</span><span>АВ=АД=ДС=СВ=10√2*√2:2=10 см
</span><span>КМ=АР- НС=6√2-4√2=2√2 см
</span>Стороны меньшего основания равны
<span> КМ*(sin 45°)=2√2*√2:2=2 см</span>