Ответ: На 4 треугольника.
Объяснение:
Соединив одну вершину выпуклого шестиугольники с остальными, мы проводим диагонали. <em>Из одной вершины многоугольника можно повести n-3 отрезка</em> ( диагоналей), где n - количество сторон ( вершин). т.к. выбранная вершина уже соединена с соседними сторонами многоугольника, и ее саму нельзя соединить с самой собой).
Следовательно, можно провести 6-3=3 отрезка, которые разделят выпуклый шестиугольник ( неважно, правильный или произвольный) на 4 треугольника. (<em>см. рисунок</em>)