Рассмотрим триугольники АВС и АСD
<ОАС=<ОСА(по условию)
<ВАО=<DCO(по условию)
АС-общая (по условию)
следовательно триугольник АВС=АСD (по 2 призноку)
Соединим точки А и В диаметра друг с другом, а также точку О с точками L и N. Опустим перпендикуляр ОК из точки О на касательную LN. Обозначим угол ВNО = al, а угол АLO = be.
Формула площади - 1/2 произведения катета на высоту,чтобы найти высоту воспользуемся теоремой Пифагора для треугольника abz( точку z ставим на половине основания ac) . bz=(ab (в квадрате) - az( в квадрате), az= 1/2 ab( т.к. катет лежащий против угла в 30 градусов равен половине гипотенузы) = 16-4= √12. S abz= (√12*2)/2= √12 , S abc= √12*2= <span>√24</span>
Верные:
1) точки А,В,С лежат на одной прямой
2) точка М принадлежит прямой m
неверные:
1) прямые m и n не пересекаются
2) точка N лежит на прямой n