Я б тебе помогла, да вот фото не открывается
Наложение-ето отображение плоскости на себя,при наложении различние точки отображаются в различние точки.При наложении отрезок отображается на равний ему отрезок.Поетому любое движение является наложением.......Вот
3)F(x)=2*x^3/3+3*x^(-4+1)/(-4+1)+x^(1/2+1)/(1/2+1)+2x+C=
=<u><em>(2/3)x^3-1/x^3+1.5x^(3/2)+2x+C</em></u>
4)s=∫√xdx=x^(3/2)/1.5=
подстановка по х от 1 до 4
=4^(3/2)/1.5-1^(3/2)/1.5=(8-1)/1.5=7/1.5=14/3=<u><em>4 2/3</em></u>
5)S=∫(6-x-x^2)dx=-x^3/3-x^2/2+6x=
найду пределы интегрирования как корни уравнения 6-x=x^2
x^2+x-6=0; D=1+24=25; x1=(-1+5)/2=2; x2=(-1-5)/2=-3
= -2^3/3-2^2/2+6*2-(-(-3)^3/3-(-3)^2/2+6*(-3))= -8/3-2+12-(9-4.5-18)=
= -4 2/3+12+13.5=25.5-4 2/3=51/2-14/3=(153-28)/6=125/6=<u><em>20 5/6</em></u>
Рассмотрим систему координат А₁В -ось ОХ, А₁Д -ось ОУ и А₁А- ось ОZ
пусть ребро куба равно "а" тогда
А₁(0,0,0), А ( 0,0,а), В( а,0,а), М ( 0,а, 0,5а) Д₁ (0,а,0)
1) Найдём координаты векторов
АД₁( 0,а,-а) и ВМ( -а,а, -0,5а)
2) Найдём их длины
| АД₁|² = 0²+а² +а² = 2а² тогда | АД₁| =а√2
| ВМ|² = а²+а² +0,25а² = 2,25а² тогда | АД₁| =1,5а
3) cosα = ( 0+а² +0,5а² ) / а√2*1,5а = 1/√2
тогда α =45 градусов ( это угол между векторами)
Площадь трапеции можно найти по формуле: среднюю линию умножить на высоту
S=3*х, где х - средняя линия
3х=118
х=39 целых 1/3