Пусть сторона ВF ровна стороне BK FP = PK BP общяя за 1 означением тр, тр BFP = BKP
Пусть этот треугольник АВС с основанием АС.
АВ=ВС,
Высота ВН=медиана и делит основание АС пополам.
АН=30 см
Треугольник АВН - прямоугольный,
Так как в получившемся прямоугольном треугольнике катеты относятся как 3:4, то с гипотенузой АВ - боковой стороной равнобедренного треугольника - они составят <u>египетский треугольник</u>, отношение сторон которого 3:4:5. Гипотенуза равна 50. (можно проверить по т. Пифагора).
Проведем высоту НМ к боковой стороне - гипотенузе треугольника АВН.
<em> Высота прямоугольного треугольника, проведенная из прямого угла к гипотенузе, делит его на подобные треугольники. </em>
Δ ВМН ≈ Δ АВН
.АН:МН=АВ:ВН
30:МН=50:40
50 МН=1200
МН=24 см
Получается, что острый угол параллелограмма = (α + β)
и тогда тупой угол параллелограмма = (180 - (α + β))
используем определение синуса и теорему синусов)))
Переведем дециметры в метры получается 0,42 метра
0,42*2=0,84 метра