∠AKD = 180 – 26 = 154° (т.к. углы AKD и AKB – смежные).
∠KDA = ∠KAD = (180 – 154) : 2 = 13° (т.к. △AKD – равнобедренный).
∠ABD = ∠ACD = 90° (т.к. опираются на дугу 180°) ⟹ △ABD и △ACD – прямоугольные.
∠BAD = ∠ADC = 90 – 13 = 77° (т.к. сумма острых углов прямоугольного треугольника равна
90°).
∠ABC = ∠BCD = 180 – 77 = 103° (т.к. сумма углов прилежащих к боковой стороне трапеции
равна 180°).
<span>Знайдіть відстань від точки М до площини ромба 3.6см
</span>
1////////////////////////////////////
Начертить основание призмы - трапецию - отдельно. Провести в ней две высоты.
Из чертежа станет ясно, что высоту трапеции можно найти из прямоугольного тр-ка по теореме Пифагора: h=4.
Площадь трапеции S=(a+b)/2*h=(7+13)/2*4=40.
S(бок.) =PH=(2*5+7+13)*3=90. Р - периметр трапеции; Н - боковое ребро призмы,
<span>S(полн.) =2S(осн.) + S(бок.) =2*40+90=170 (кв. ед.).</span>