Средняя линия треугольника равна половине стороны, которой параллельна.
Если средняя линия 6 см, то параллельная сторона 6*2= 12 см
Если средняя линия 9 см, то параллельная сторона 9*2= 18 см
Если средняя линия 10 см, то параллельная сторона 10*2= 20 см
Тогда периметр треугольника
Р = 12 + 18 + 20 = 50 см
Теорема:
Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне.
<span>Дано:
∠COD,</span>A1B1 ∥ A2B2 ∥ A3B3,A1, A2, A3 ∈OC, B1, B2, B3 ∈OD,<span>A1A2=A2A3.
Доказать:
</span>B1B2=B2B3.
Доказательство:
1) Через точку B2 проведем прямую EF, EF ∥ A1A3.
2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).<span>Следовательно, A1FB2A2 — параллелограмм. </span><span>По св-ву противолежащих сторон параллелограмма, A1A2=FB2.
</span>3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E.
4) Так как A1A2=A2A3 (по условию), то FB2=B2E.
<span>5) Рассмотрим треугольники B2B1F и B2B3E.</span>- FB2=B2E (по доказанному),<span>- ∠B1B2F=∠B2EB3 =</span><span>∠B2FB1=∠B2EB3.
</span><span>Следовательно, треугольники B2B1F и B2B3E равны.</span>Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3.
<span><span />Теорема доказана. :)
</span>
сделаем построение по условию
дополнительно
параллельный перенос прямой (BD) в прямую (B1D1)
искомый угол <AB1D1 в треугольнике ∆AB1D1
по теореме Пифагора
AB1=√(a^2+(3a)^2) =a√(1+9)= a√10
B1D1=√(a^2+(2a)^2) =a√(1+4)= a√5
AD1=√((2a)^2+(3a)^2) =a√(4+9)= a√13
по теореме косинусов
AD1^2 = AB1^2+B1D1^2 - 2*AB1*B1D1 * cos<AB1D1
(a√13)^2=(a√10)^2 + (a√5)^2 - 2* a√10* a√5 * cos<AB1D1
13a^2=10a^2 + 5a^2 -10√2a^2 * cos<AB1D1
cos<AB1D1 = 13a^2-(10a^2 + 5a^2) / -10√2a^2 = -2a^2 / -10√2a^2 = √2/10
<AB1D1 = arccos (√2/10)
Ответ угол между прямыми BD AB1 arccos (√2/10)
Пусть ромб АВСD. Высота ВН
Смежные углы ромба в сумме равны 180°.
Значит <A=180°-120°=60°.
В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см.
Тогда периметр равен 96см (у ромба 4 равных стороны).
Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам.
В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см.
Ответ: сторона 24см, периметр 96см, меньшая сторона 24см.