Пусть x - 1 сторона ,вторая - y,тогда по условию задачи x/y = 5/8,откуда x = 5y/8. Запишем теорему косинусов для третьей стороны : 441 = 25y^2/64 + y^2 - 2y*5y*cos(60) / 8 ;Приведем к общему знаменателю и приведем подобные 441 = 49y^2/64 ,откуда y = 24.Тогда x = 5y/8 = 15
Ответ : 24 и 15
Чтобы найти площадь прямоугольного треугольника, надо воспользоваться специальной формулой. Вот она:
S=1/2ab, где а и b - катеты прямоугольного треугольника. Сейчас мы не можем воспользоваться этой формулой, так как нам не известен другой катет этого треугольника. Найдём его по теореме Пифагора:
c^2=a^2+b^2 - теорема Пифагора в общем виде.
30^2=18^2+b^2
900=324+b^2
b^2=900-324
b^2=576
b=24 - другой катет. Теперь подставим числа в формулу площади и получим:
S=1/2×18×24=216. Это наш ответ, запишем его правильно:
Ответ: S=216
1. 4) АВ и АN
2. 1) 23 см. (Т.к. 7 + 16 = 23) Ну блин дети..Это же просто ,попробуйте сами).
Параллелограмм АДСВ площадью=24, ДК=КС, СЛ=ЛВ, проводим диагонали АС и ДВ, диагональ АС делит параллелограмм на 2 равных треугольника, площадь АДС=площадьАВ=1/2площадьАДСВ=24/2=12, треугольник АДС, АК-медиана и делит треугольник на 2 равновеликих треугольника, площадьАДК=площадьАКС=1/2площадь АДС=12/2=6, треугольник АСВ, АЛ-медиана, площадь АСЛ=площадь АЛВ=1/2площадь АСВ=12/2=6,
площадь АКСЛ=площадьАКС=площадьАСЛ=6+6=12,
треугольник ДСВ площадью1/2АДСВ=24/2=12, КЛ-средняя линия треугольника параллельна ДВ=1/2ДВ, СН-высота на ДВ, площадь ДСВ=1/2*ДВ*СН=12, средняя линия КЛ делит высоту на 2 равные части=1/2СН, тогда площадь КСЛ=1/2*КЛ*1/2СН=1/2*1/2ДВ*1/2СН=1/8ДВ*СН, т.е площадьКСЛ=площадьДВС*2/8=12*2/8=3,
площадьАКЛ=площадьАКСЛ-площадьКСЛ=12-3=9
В сумме смежные углы составляют 180 градусов.
Х+х+30 =180
2х= 150
Х=75 -> х+30 = 105 градусов.
Ответ: 75 и 105 градусов.