Тогда это <1+<2=2<1=2<2=220
<1=220/2=110
<A=180-<1=180-110=70
<span>Нижнее основание AD = 33</span>
<span>верхнее BC = 15</span>
<span>Точка пересечения диагоналей О</span>
<span>Обозначим угол OAD = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и ОАВ, и ОВС, и ВСО.</span>
<span>Треугольник АВС равнобедренный АВ = ВС</span>
<span>Опускаем высоту ВК на AD</span>
<span>BK^2 = AB^2 - AK^2 = 15^2 - ((33-15/2)^2 = 12^2</span>
<span>S = 12 * (15+33)/2 = 288</span>
<span>2) </span>
<span>Сумма длин радиусов вписанной и описанной окружности r + R = 7 sqrt(3)/2</span>
<span>Обозначим сторону буквой а</span>
<span>Медиана (высота, биссектриса) равна a sqrt(3)/2</span>
<span>Две трети медианы - радиус описанной окружности</span>
<span>одна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)</span>
<span>Сумма радиусов нам дана</span>
<span>a sqrt(3)/2 = 7 sqrt(3)/2</span>
<span>a = 7</span>
<span>Периметр 21</span>
<span>S = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4</span>
Если угол тупой, то скалярное произведение меньше 0. Вектор а имеет координаты 4и -m, вектор b имеет координаты m^2 и 12. По формуле скалярного произведения получаем 4m^2 -12m<0. Решая квадратное неравенство получаем 0<m<3
Площадь равна полусумме оснований на высоту.
11=14+8/2h
11=11h
h=1
1) Четырехугольник МОКС:
∠МОК=∠АОВ=120°
∠М=∠К=90°,
значит ∠С=60°.( сумма всех углов четырехугольника 360°).
По формуле
S(Δ)=(1/2)·b·c·sinα
находим
S( ΔABC)=(1/2)· AC·BC·sin ∠C=10√3,
2) Из прямоугольного треугольника АСК по теореме Пифагора
АК²=20²-12²=256
АК=16
Если провести вторую высоту из точки В, то получим два равных между собой треугольника ( трапеция равнобедренная по условию) и прямоугольник.
Пусть КD=x, тогда верхнее основание ВС=16-х, нижнее основание AD=16+x
S( трапеции)=(BC+AD)·CK/2=(16-x+16+x)·12/2=32·12/2=16·12=192.
3)∠M=∠Q =60°( трапеция равнобедренная MN=PQ).
ΔMNK - равнобедренный (MN=NK=MQ/2)
Значит ∠MKN=60°, а так как сумма углов треугольника 180°, то и
∠MNK=60°.
Треугольник MNK- равносторонний.
∠KNP=120°-∠MNK=120°-60°=60°
В треугольнике NPK
NP=MK=NK, значит это равнобедренный треугольник с углом 60° при вершине, что означает, треугольник равносторонний.
ΔMNK=ΔKNP.
Все стороны этого треугольника равны между собой.
КР=NK=NP.
NP=KQ
Треугольники КPQ и КNP также равны между собой.
Все три треугольника равны между собой
S( трапеции)=3·5=15