Cos²(π/8) - sin²(π/8) = cos(2*π/8) = cos (π/4) = √2/2
<span>0,3(8-3у)=3,2-0,8(у-7)
2.4-0.9у=3.2-0.8у+5.6
-0.9у+0.8у=5.6+3.2-2.4
-0.1у=6.4
у=-64</span>
1) sin5x+sin2x+sin3x+sin4x=0
(sin5x+sin3x)+(sin2x+sin4x)=0
2sin4x··cosx+2sin3x·cosx=0
2cosx(sin4x+sin3x)=0
2cosx=0 sin4x+sin3x=0
cosx=0 2sin3.5x·cos(x\2)=0
x=π\2+πk k∈Z 2sin3.5x=0 cos(x\2)=0
sin3.5x=0 x\2=π\2+πn n∈Z
3.5x=πm m∈Z x=π+2πn n∈Z
x=2\7πm m∈Z
2) co5x+cos2x+cos3x+cos4x=0
(cos5x+cos3x)+(cos2x+cos4x)=0
2cos4x·cosx+2cos3x·cosx=0
2cosx(cos4x+cos3x)=0
2cosx=0 cos4x+cos3x=0
cosx=0 2cos(3.5x)·cos(x\2)=0
x=π\2+πk k∈Z 2cos3.5x=0 cosx\2=0
cos3.5x=0 x\2=π\2+πn n∈Z
3.5x=π\2+πm m∈Z x=π+πn n∈Z
x=π\7+2\7πm m∈Z