18) f '(x) = (-2)' * ctgx - (-2)* (ctgx)' = 0 * ctgx + 2 * (- 1/Sin²x) = - 2/Sin²x
19) f ' (x) = (Sin15x)' = Cos15x * (15x)' = 15Cos15x
20) f '(x) = [Cos(π/4 - 12x)] ' = - Sin(π/4 - 12x) * (π/4 - 12x)' = 12Sin(π/4 - 12x)
∫₁²(e^(1/x)/x²)dx
Пусть e^(1/x)=u ⇒
du=(e^(1/x))`=e^(1/x)*(1/x)`=e^(1/x)*(x⁻¹)`=-e^(1/x)*x⁻²=-e^(1/x)/x² ⇒
e^(1/x)/x²=-du
∫₁²(e^(1/x)/x²)dx=∫₁²(-du)=-u I₁²=-e^(1/x)I₁²=-(e¹/²-e¹/¹)=e-√e≈1,07.
10,4+3*0.3-(0,3+10,4)=10,4+0.9-10,7=0,6