Если точка М лежит на одинаковом расстоянии от сторон угла АОС, то ОМ - биссектриса угла АОС и делит его на 2 равных угла, отсюда следует, что
∠МОС = ∠АОС/2 = 82/2 = 41°.
Ответ: 41°.
Задача элементарная, но мне захотелось написать "совершенно" формальное решение.
Пусть центр квадрата P, середина (это так надо перевести слово "серебро" в контексте задачи :)) BC - M.
Ясно, что центр окружности лежит на прямой, параллельной BC и AD и проходящей через середину MP - точку K. Пусть эта прямая пересекает AB в точке N. Поскольку окружность симметрична относительно KN, то PK и AN - это половины хорд, перпендикулярных линии KN, проходящей через центр.
Ясно, что AN = 3a/4; PK = a/4; NK = a/2; где a - сторона квадрата.
Расстояние до хорды связано с радиусом и половиной длины хорды теоремой Пифагора. Разность расстояний от центра до ПОЛУхорд AN и PK равна NK; Если обозначить радиус окружности R, то
√(R^2 - (a/4)^2) - √(R^2 - (3a/4)^2) = a/2; пусть 4R/a = x; тогда
√(x^2 - 1) = √(x^2 - 9) + 2;
x^2 - 1 = x^2 - 9 + 4√(x^2 - 9) + 4;
x^2 - 9 = 1; x = √10;
ну, и 4/a = 2;
R = √10/2;
Разумеется, это простое упражнение на координатный метод.
По сути надо найти окружность, проходящую через точки (0,1) (0,-1) и (-2,-3) для квадрата со стороной 4;
Центр в точке (b,0)
b^2 + 1 = R^2;
(b + 2)^2 + 3^2 = R^2;
b = -3; R = √10; это результат для квадрата со стороной a =4;
то есть при a = 2; R = √10/2;
МК может быть равным 15+18=33см если точка К лежит по одну сторону с точкой N
МК может быть равно 18-15=3см если точка N лежит между точками М и К
найдём координаты точки M
M((x1+ x2)/2 ; (y1+ y2)/2 ; (z1+ z2)/2)
M(-2;-1;3)
Длина BM= √(x2- x1) +(y2-y1)+ (z2- z1)
Рассмотрим ΔEPN и ΔMPF. EP=PF, MP=PN, ∠EPN=∠MPF(т.к. вертикальные), то ΔEPN=ΔMPF( по 2 сторонам и углу между ними)⇒∠ENP=∠PMF⇒ прямые EN и MF секущая NM, ∠ENP=∠PMF(накрест лежащие)⇒EN||MF