1)sinA=BC/AB;⇒BC/AB=√15/4;
BC=√15·x;AC=4x;
cosA=AC/AB;
AC=√(AB²-BC²)=√16x²-15x²=√x²=x;
cosA=x/4x=1/4;
или сosA=√(1-sin²A)=√(1-15/16)=√(1/16)=1/4;
2)cosA=2√6/5;⇒SinA=√(1-cos²A)=√(1-24/25)=√(1/25)=1/5;
3)cosA=AC/AB=3/5;⇒AC=3x;AB=5x;
CosB=BC/AB;
BC=√(AB²-AC²)=√(25x²-9x²)=√16x²=4x;
CosB=4x/5x=4/5;
Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Дано:
Угол mon=углу pon
____________________
Доказать, что треуг Mon = треуг nop
Решение :
1)Угол mno=углу pno(углы при бисектрисе)
2)так как угол mno= углу pno, а угол mon= углу pon, то треугольники равны по стороне и двум прилежащим к ней углам, все.
Диагональ АС = АО + ОС = 8 см + 6 см = 14 см.
∆ABC = ∆ADC - по III признаку (AB = CD, AD = BC, AC - общая). Тогда SABC = SACD
SABC = 1/2•AC•BO => S ABCD = AC•BD
SABCD = 14 см•4см = 56 см².
Ответ: 56 см².