Рассмотрим <u>ромб АМСН </u>на рисунке, данном во вложении.
Его вершины А и С лежат на середине сторон квадрата.
Две другие вершины М и Н лежат на диагонали ВД квадрата.
МН - меньшая диагональ ромба- по условию равна 1/6 диагонали ВД квадрата со стороной 21 ( Отрезок <u>МН</u>, соединяющий вершины, расположенные на диагонали квадрата, - и <u>есть меньшая диагональ ромба</u>).
По формуле диагональ d квадрата равна d=а√2 =>
d=21√2,
следовательно, расстояние
МН=d:6=(21√2):6 см
АС - диагональ квадрата АВСО, сторона которого равна половине стороны исходного квадрата.
АВ=21:2=10,5см
АС=10,5√2 ( опять же по формуле диагонали квадрата<u> d=а√2</u>)
<em>Площадь ромба равна половине произведения его диагоналей</em>.
S АМСН=АС*МН:2={(10,5√2)*(21√2):6}:2=10,5*2*21:12=21*21:12см²
<u>Закрашенная часть состоит из 4-х таких ромбов. </u>
Её площадь равна
S=4*21*21:12=4*3*7*21:12=7*21=147см²
<span>Сумма цифр числа 147=12. </span>
Они не являются перпендикулярными поскольку ни одна прямая не расположена под углом 90 градусов
<u>Первая пара треугольников</u><u>:</u><u> </u>
<u>Если</u> в ⊿АВС <u>ВD -</u><u> биссектриса</u>.
<em>Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторо</em>н.
Тогда ВС:ВА=8/10=4/5
В ⊿А₁В₁С₁ катет ВС по т.Пифагора равен 12.
В₁С₁:В₁А₁=12/15=4/5
<em> Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе второго прямоугольного треугольника, то такие треугольники подобны.</em>
Ответ: Подобны, <u>если ВD в ⊿АВС - биссектриса.</u> В противном случае - нет.
<u>Вторая пара треугольников:
</u>В ⊿АВС АD - биссектриса (∠ ВАD=∠DАС по рисунку )
Следовательно, по свойству биссектрисы
АС:АВ =9:15=3/5
В ⊿А₁В₁С₁
А₁С₁:А₁В₁=12:20=3/5
Ответ: да, подобны.
Интересная задача. Только её решают в курсе алгебры , а не геометрии. Это в каком же классе тебе такое задали?
Решение на фотографиях, набирать довольно долго:)
PA=(18-7)/2=5.5
AT=18-5.5=12.5