Опустим из точки D перпендикуляр DH на основание цилиндра. DH равен высоте цилиндра. Тогда хорда СН по Пифагору равна √(CD²-DH²)=√(25²-7²)=24см.
Проведем диаметр АВ параллельно хорде СН. Тогда перпендикуляр ОК и будет искомым расстоянием от отрезка CD до оси цилиндра, так как этот перпендикуляр является расстоянием между двумя параллельными плоскостями СDH (содержащую отрезок CD) и АА'BB' (содержащую ось цилиндра). Отрезок ОК делит хорду СН пополам. Тогда по Пифагору
ОК=√(ОС²-СК²)=√(13²-12²)=5см.
Ответ: расстояние от отрезка CD до оси цилиндра равно 5см.
S= 1/2 d<u /><em><u /></em><u><em /></u><em /><em>1</em>×d2 =1/2 ×10×36=180
∠1-∠2=75° ⇒ ∠1=75°+∠2
∠2=∠3
180°=∠1+∠2+∠3=75°+∠2+∠2+∠2=75°+3·∠2
3·∠2=180°-75°=105°
∠2=105°:3=35°
∠1=35°+75°=110°
∠2=∠3=35°